<u>Химия. БЖД</u>

УДК 54-386 + 546.47 + 546.593 + 543.442.3

Родина Татьяна Андреевна Амурский государственный университет г. Благовещенск, Российская Федерация E-mail: t-rodina@yandex.ru Rodina Tatyana Andreevna

> Amur State University Blagoveshchensk, Russia E-mail: t-rodina@yandex.ru

РОЛЬ НЕВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ В СУПРАМОЛЕКУЛЯРНОЙ САМО-ОРГАНИЗАЦИИ ДИТИОКАРБАМАТНО-ХЛОРИДНЫХ КОМПЛЕКСОВ ЗОЛОТА(III)-ЦИНКА

THE ROLE OF NON-VALENT INTERACTIONS IN THE SUPRAMOLECULAR SELF-ORGANIZATION OF THE GOLD(III)-ZINC DITHIOCARBAMATO-CHLORIDO COMPLEXES

Аннотация. На основании данных рентгеноструктурных исследований проведен анализ молекулярных и кристаллических структур ряда дитиокарбаматно-хлоридных комплексов золота(III)-цинка. Структурными единицами соединений являются комплексные катионы бис(дитиокарбамато)золота(III) и комплексные анионы $[ZnCl_4]^{2-}$ или $[Zn_2Cl_6]^{2-}$. Установлено, что супрамолекулярная самоорганизация комплексов обусловлена множественными невалентными взаимодействиями различных типов: вторичными межкатионными (Au…S) и катион-анионными (S…Cl) связями, а также водородными связями неклассического типа C–H…Cl, совокупность которых приводит к формированию псевдополимерных катион-анионных цепей и 2D-слоев.

Abstract. Based on X-ray diffraction data, an analysis of the molecular and crystal structures of a number of gold(III)-zinc dithiocarbamato-chlorido complexes was carried out. The structural units of the compounds are bis(dithiocarbamato)gold(III) complex cations and $[ZnCl_4]^{2-}$ or $[Zn_2Cl_6]^{2-}$ complex anions. It has been established that the supramolecular selforganization of the complexes is due to multiple non-valent interactions of various types: intercationic (Au…S) and cation-anionic (S…Cl) secondary bonds, as well as hydrogen bonds of the non-classical type C–H…Cl, a set which leads to the formation of pseudopolymeric cationanionic chains and 2D layers.

Ключевые слова: гетероядерные дитиокарбаматно-хлоридные комплексы золота(III)-цинка, супрамолекулярная самоорганизация, рентгеноструктурный анализ, вторичные (Au…S, S…Cl) связи, водородные связи.

Key words: heteronuclear gold(III)-zinc(II) dithiocarbamato-chlorido complexes, supramolecular self-organization, X-ray diffraction analysis, secondary (Au…S, S…Cl) bonds, hydrogen bonds. Структурная организация координационных соединений осуществляется посредством внутри- и межмолекулярных взаимодействий различного типа. Прочные внутримолекулярные ковалентные и координационные связи участвуют в формировании молекулярных структур, в то время как относительно слабые взаимодействия невалентного типа играют определяющую роль в построении надмолекулярных архитектур. Энергия невалентных связей редко превышает 10 ккал/моль, несмотря на это, они определяют многие физические свойства соединений – термодинамическую стабильность, оптические и электрические свойства, играют важную роль в процессах молекулярного распознавания, в протекании и регулировании биохимических процессов, связанных с жизнедеятельностью организмов. Эти обстоятельства делают актуальным изучение природы слабых невалентных взаимодействий (вторичных и водородных связей, донорно-акцепторных и электростатических взаимодействий и др.), их влияния на самоорганизацию соединений на супрамолекулярном уровне, особенно в связи с перспективами развития супрамолекулярной химии [1].

Важным критерием взаимодействия между атомами являются расстояния между ними, для определения которых используются рентгеноструктурные исследования. Для описания структур, в которых между ковалентно несвязанными атомами возникают аттрактивные взаимодействия, промежуточные по силе между ковалентными связями и ван-дерваальсовыми взаимодействиями, был предложен термин «вторичные связи» [2]. Вторичные связи реализуются на расстояниях, меньших или сравнимых с суммой ван-дер-ваальсовых радиусов взаимодействующих атомов.

Значения ван-дер-ваальсовых радиусов атомов были определены Л. Полингом на основе анализа межмолекулярных расстояний между атомами в кристаллах в рамках принципа плотной упаковки молекул [3]. В дальнейшем значения ван-дер-ваальсовых радиусов атомов неоднократно уточнялись и пересматривались [4-6] и в настоящее время широко используются как качественный критерий невалентных взаимодействий между атомами.

Важным признаком вторичного связывания является его возникновение между атомами с замкнутыми электронными оболочками, между которыми должно наблюдаться отталкивание. Действительно, следует ожидать, что два катиона металла с закрытой оболочкой отталкивают друг друга, однако в случае металлоорганических соединений в последнее время накоплены данные о целом семействе катион-катионных взаимодействий между системами $d^8-d^{10}-s^2$ [7]. Они слабее, чем большинство ковалентных или ионных связей, но прочнее, чем другие связи Ван-дер-Ваальса, и примерно сопоставимы по прочности с типичными водородными связями. Еще одним существенным признаком аттрактивного невалентного взаимодействия между атомами является наличие не просто короткого контакта, а непрерывного спектра расстояний для межатомного контакта с участием аналогичных атомов в ряду родственных соединений [8].

В образовании вторичных связей с металлами могут принимать участие атомы кислорода, азота, серы, фосфора, хлора, способные к проявлению как донорных, так и акцепторных свойств. Особый интерес представляют атомы элементов третьего периода – фосфора, серы, хлора, имеющие не только неподеленные электронные пары, но и вакантные орбитали, проявляющие различную валентность и координацию и обладающие лабильными и легко поляризуемыми электронными оболочками. Кроме того, исследование невалентных взаимодействий с участием серы имеет особую актуальность в связи с распространенностью серосодержащих соединений в биологических системах.

Дитиокарбаматные S,S'-координирующие лиганды благодаря наличию нескольких донорных атомов являются перспективными полидентатными лигандами, способными образовывать комплексы с переходными металлами разнообразного строения и разного типа координации.

В настоящей работе на основании данных рентгеноструктурных исследований проведен анализ молекулярных и кристаллических структур дитиокабаматно-хлоридных комплексов золота(III)-цинка с установлением роли невалентных взаимодействий различных типов в структурной самоорганизации комплексов на супрамолекулярном уровне.

Экспериментальная часть

Получение дитиокарбаматно-хлоридных комплексов золота(III)-цинка(II) состава $[Au \{S_2CNR_2\}_2]_2X$ (R = CH₃, C₂H₅, C₃H₇, *iso*-C₃H₇, C₄H₉, *iso*-C₄H₉; R₂ = (CH₂)₅, (CH₂)₆, (CH₂)₄O; X = $[ZnCl_4]^{2-}$, $[Zn_2Cl_6]^{2-}$) основывалось на связывании золота(III) из раствора в 2М HCl свежеосажденными дитиокарбаматами цинка $[Zn_2\{S_2CNR_2\}_4]$ преимущественно биядерного строения (исключение составляет только ди-*изо*-бутилдитиокарбаматный комплекс цинка, включающий наряду с димерными молекулами, и мономерные в соотношении 1:1). Исходные дитиокарбаматы цинка(II), представляющие собой белые объемные осадки с высокоразвитой поверхностью, были получены взаимодействием водных растворов ZnCl₂ с соответствующими дитиокарбаматами натрия, взятыми в стехиометрическом избытке (~10 %).

Во всех случаях к 100 мг свежеосажденного $[Zn_2{S_2CNR_2}_4]$ приливали по 10 мл растворов AuCl₃ (в 2M соляной кислоте), содержащих стехиометрические количества золота, и перемешивали на магнитной мешалке в течение 1 часа при комнатной температуре. Полученные желтые осадки отфильтровывали, промывали водой и высушивали на фильтре при комнатной температуре. Гетерогенные реакции связывания золота(III) из раствора дитиокарбаматами цинка могут быть представлены следующими реакциями:

 $[Zn_2(S_2CNR_2)_4] + 2H[AuCl_4] = [Au (S_2CNR_2)_2]_2[ZnCl_4] + ZnCl_2 + 2HCl_4]$

 $(R = CH_3 (1), C_2H_5 (2), C_3H_7 (3), C_4H_9 (5); R_2 = (CH_2)_4O (9))$

 $3/2[Zn_2(S_2CNR_2)_4] + 3H[AuCl_4] + H_2O = H_3O[Au(S_2CNR_2)_2]_3[ZnCl_4]_2 + ZnCl_2 + 2HCl;$

 $(R = iso-C_3H_7 (4); R_2 = (CH_2)_5 (7), (CH_2)_6 (8))$

 $2/3[Zn\{S_2CN(iso-C_4H_9)_2\}_2] \bullet [Zn_2\{S_2CN(iso-C_4H_9)_2\}_4] + 2H[AuCl_4] = [Au\{S_2CN(iso-C_4H_9)_2\}_4] + 2H[AuCl_4] = [Au\{S_2CN(iso-C_4H_9)_2]_4] + 2H[AuCl_4] + 2H[AuCl_4] = [Au\{S_2CN(iso-C_4H_9)_2]_4] + 2H[AuCl_4] + 2H[AuCl_4] = [Au\{S_2CN(iso-C_4H_9)_2]_4] + 2H[AuCl_4] + 2H[AuCl_$

 $C_{4}H_{9}_{2}_{2}_{2}[Zn_{2}Cl_{6}](6) + 2HCl.$

Связывание золота протекает по механизму хемосорбции и в первых двух случаях сопровождается полным перераспределением лигандов между координационными сферами Zn(II) и Au(III) с выходом половины ионов цинка в раствор. В последнем случае образуется гексахлородицинкат(II) *бис*(ди-*изо*-бутилдитиокарбамато)золота(III), поэтому реакции формально сводится к связыванию молекулы AuCl₃ каждым моноядерным фрагментом комплекса-хемосорбента и не сопровождается выходом никаких побочных продуктов в раствор.

Для дифрактометрических экспериментов прозрачные желтые кристаллы комплексов получали из среды органических растворителей. В результате кристаллизации соединения 2, 4 и 9 были получены в сольватированных формах.

Рентгеноструктурные исследования выполнены на дифрактометре «Bruker-NONIUS X8 APEX CCD» (Мо-К α -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор данных проведен по стандартной методике: φ и ω сканирование узких фреймов. Поглощение учтено эмпирически с использованием программы SADABS [9]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении неводородных атомов. Положения атомов водорода рассчитаны геометрически и включены в уточнение в модели «наездника». Сбор и редактирование данных проведены по программам *APEX2* и *SAINT* [9]. Все расчеты по определению и уточнению структур выполнены по программам *SHELXTL* [10].

Результаты и их обсуждение

Структурными единицами всех соединений, построенных по типу двойных комплексных солей, являются комплексные катионы $[Au(S_2CNR_2)_2]^+$ и комплексные анионы $[ZnCl_4]^{2-}$ (либо $[Zn_2Cl_6]^{2-}$ в случае соединения 6). В составе обсуждаемых соединений катионная часть представлена различным количеством молекулярных форм. Так, в комплексах 1 и 9 катионы золота(III) структурно унифицированы, в то время как в соединениях 4 и 7 присутствуют два, в соединениях 3, 6 и 8 – три, в соединении 2 – четыре, а в соединении 5 – 13 неэквивалентных комплексных катионов. Характер структурных различий, обнаруживаемых в значениях соответственных длин связей и валентных углов в составе неэквивалентных катионов, позволяет рассматривать их как конформационные изомеры.

При этом на молекулярном уровне все комплексные катионы золота(III) характеризуются значительным структурным сходством. В каждом из них атом металла *S*,*S*'-бидентатно координирует два Dtc лиганда с образованием двух четырехчленных малоразмерных металлоциклов [AuS₂C] с золотом в роли спироатома. Значения межатомных расстояний Au···C 2,763–2,857 и S···S 2,836–2,877 Å значительно меньше сумм ван-дер-ваальсовых радиусов соответствующих пар атомов 3.36 и 3.60 Å [4]. Кроме того, торсионные углы AuSSC и AuSCS, близкие к 180°, указывают на копланарное расположение атомов в группировках [AuS₂C]. Оба эти обстоятельства свидетельствуют о высокой концентрации π -электронной плотности и проявлении *транс*-аннулярного взаимодействия внутри циклов. Геометрия хромофоров [AuS₄] близка к плоско-тетрагональной с низкоспиновым *dsp*²-гибридным состоянием золота(III).

В дитиокарбаматных группах длина связей N–C(S)S лежит в диапазоне 1.280–1.380 Å, что существенно короче связей N–CH₂ 1.457–1.544 Å, а торсионные углы CNCS, близкие к 0° или 180° (отклонения углов не превышают 7.5°), свидетельствуют о практически плоскостной геометрии структурного фрагмента C₂NCS₂ ввиду проявления мезомерного эффекта. Эти особенности отражают частично двойной характер формально одинарной N–C(S)S связи вследствие примешивания к sp^2 – к sp^3 –гибридному состоянию атомов азота и углерода.

Анионная часть большинства комплексов представлена моноядерными комплексными анионами $[ZnCl_4]^{2-}$, исключение составляет биядерный $[Zn_2Cl_6]^{2-}$ в соединении **6**. Тетрахлороцинкат-ионы $[ZnCl_4]^{2-}$ в большинстве изученных комплексов золота(III)-цинка структурно унифицированы. Исключение – соединения **2** и **5**, в которых анионная часть представ-

лена двумя или шестью неэквивалентными $[ZnCl_4]^{2-}$ соответственно. В составе тетрахлороцинкат-ионов или нецентросимметричного гексахлородицинкат-иона атомы металла комплексообразователя находятся в гомогенном окружении атомов хлора, образуя искаженнотетраэдрические хромофоры [ZnCl₄] (*sp*³-гибридное состояние атома цинка). Длина неэквивалентных связей Zn–Cl лежит в диапазоне 2.164–2.368 Å, а валентные углы Cl–Zn–Cl (101.4–115.5°) несколько отклоняются от чисто тетраэдрического значения. Геометрия координационных полиэдров атомов цинка была количественно охарактеризована с использованием параметра $\tau_4 = \frac{360°-(\alpha+\beta)}{141°}$ (α и β – два наибольших угла L–M–L) [11]. В комплексах с четверной координацией металлов предельные значения, принимаемые параметром τ_4 , 0 (α = β = 180°) и 1 (α = β = 109.5°), соответствуют плоско-тетрагональной и тетраэдрической конфигурации полиэдров соответственно. Полученные значения τ_4 указывают на преобладающий (93.1–98.7 %) вклад тетраэдрической составляющей в геометрию полиэдра цинка.

Несмотря на существенное структурное сходство комплексных катионов $[Au(S_2CNR_2)_2]^+$ и комплексных анионов $[ZnCl_4]^{2-}$ в соединениях 1–9, супрамолекулярная организация всех исследованных дитиокарбаматов золота(III)–цинка существенно различна, что обусловлено проявлением разнообразных взаимодействий невалентного типа, участвующих в связывании всех структурных единиц комплексов. Рассмотрим эти взаимодействия более подробно.

Во всех соединениях реализуются межкатионные вторичные связи Au…S, длина которых меньше или сравнима с суммой ван-дер-ваальсовых радиусов атомов золота и серы 3.90 Å [6] (табл. 1).

Таблица 1

Соединение	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
1	$Au \cdots S^{3a}$	3.3614(13)				
2	$Au^1 \cdots S^5$	3.462(4)	$Au^3 \cdots S^{2b}$	4.052(4)	$Au^4 \cdots S^{6b}$	3.527(4)
	$Au^2 \cdots S^{11}$	3.510(4)	$Au^3 \cdots S^7$	4.107(4)	$Au^4 \cdots S^{12}$	3.467(4)
	$Au^2 \cdots S^{13a}$	3.572(4)				
3	$Au^1 \cdots S^8$	3.6714(12)	$Au^3 \cdots S^4$	3.7257(11)		
4	$Au^1 \cdots S^{21}$	3.5863(9)	$Au^1 \cdots S^{13a}$	3.8119(8)	$Au^2 \cdots S^{12}$	3.6032(8)
5	$Au^1 \cdots S^{23}$	3.656(3)	$Au^6 \cdots S^{71}$	3.829(3)	$Au^9 \cdots S^{82}$	3.552(4)
	$Au^2 \cdots S^{11}$	3.462(4)	$Au^6 \cdots S^{113c}$	3.531(4)	$Au^9 \cdots S^{101}$	3.619(4)
	$Au^2 \cdots S^{32}$	3.601(3)	$Au^7 \cdots S^{63}$	3.576(4)	$Au^{10} \cdots S^{93}$	3.822(4)
	$Au^3 \cdots S^{22}$	3.781(3)	$Au^7 \cdots S^{84}$	3.590(4)	$Au^{10} \cdots S^{111}$	3.462(4)
	$Au^3 \cdots S^{42}$	3.720(4)	$Au^8 \cdots S^{74}$	3.808(4)	$Au^{11} \cdots S^{61d}$	3.576(5)
	$Au^4 \cdots S^{34}$	3.946(4)	$Au^8 \cdots S^{92}$	3.628(4)	$Au^{11} \cdots S^{103}$	3.713(4)
6	$Au^1 \cdots S^4$	4.2113(11)	$Au^2 \cdots S^7$	3.7907(11)	$Au^3 \cdots S^5$	3.9979(11)
			$Au^2 \cdots S^8$	3.9907(11)	$Au^3 \cdots S^6$	4.1600(11)
7	$Au^1 \cdots S^{2a}$	3.493(2)	$Au^1 \cdots S^5$	3.640(2)	$Au^2 \cdots S^1$	3.675(2)
8	$Au^1 \cdots S^{31}$	3.446(4)	$Au^2 \cdots S^{31}$	3.818(5)	$Au^3 \cdots S^{22}$	3.763(5)
9	$Au^1 \cdots S^{1b}$	3.663(2)				

Длина вторичных связей (d) Au…S в соединениях 1-9

Вестник АмГУ

Результатом таких взаимодействий является формирование биядерных $[Au_2{S_2CNR_2}_4]^{2+}$ (1, 8) и трехъядерных $[Au_3{S_2CNR_2}_6]^{3+}$ (2, 3, 4) катионов, линейных и зигзагообразных 1D-полимерных цепей, по длине которых чередуются изомерные моноядерные катионы (2, 3, 5, 6, 9), моноядерные и биядерные катионы (7, 8) или трехъядерные фрагменты (3, 4), а также катион-анионных лент (1) и 2D-полимерных сеток (7).

В соединении 1 парные вторичные связи Au…S между эквивалентными катионами приводят к образованию димера (рис. 1а). В остальных случаях обсуждаемый тип взаимодействий приводит к построению более сложных структур. Так, в комплексе 3 образуются линейные катионные тримеры [Au¹…Au³…Au¹] (рис. 1в), а в соединениях 4 и 7 трехъядерные структурные фрагменты [Au¹…Au²…Au¹] дополнительно объединяются друг с другом посредством пар коротких контактов, что приводит к формированию зигзагообразных псевдополимерных цепей типа (…[Au¹…Au²…Au¹]…)_n (рис. 2a, 3a). Структуры комплексов 6 и 9 (рис. 2б, 3в) включают линейные катионные цепи, построенные из эквивалентных катионов (9) или из чередующихся четырехъядерных фрагментов [Au¹…Au²…Au³…Au²] (6).

Для соединения 2 характерен сложный способ взаимного структурного упорядочения изомерных катионов за счет вторичных связей Au…S: комплексные катионы Au², Au³ и Au⁴ участвуют в построении зигзагообразной полимерной цепи, тогда как Au¹ выполняет роль бокового заместителя (…Au²[…Au¹]…Au⁴…Au³…)_n (рис. 1б).

Рис. 1. Супрамолекулярные структуры комплексов **1-3**: катион-анионная псевдополимерная лента **1** (а) и **2** (б), катион-анионная зигзагообразная псевдополимерная цепь **3** (в). Вторичные связи Au…S и S…Cl показаны пунктиром. Алкильные заместители не приведены.

Рис. 2. Фрагменты псевдополимерных катионных цепей комплексов **4** (а) и **6** (б). Вторичные связи Au…S и S…Cl показаны пунктиром. Алкильные заместители не приведены.

Рис. 3. Супрамолекулярные структуры комплексов 7–9: 2D-катион-анионная сетка в соединении 7 (а), чередование биядерных и моноядерных катионов в псевдополимерной цепи 8 (б), 1D-псевдополимерная линейная катионная цепь 9 (в). Вторичные связи Au…S и S…Cl и Cl…Cl показаны пунктиром. Алкильные заместители не приведены.

Необычный характер строения псевдополимерной цепи следует отметить в комплексе 8: изомерные катионы Au^2 и Au^3 посредством парных контактов Au...S образуют димеры, которые, в свою очередь, взаимодействуют с катионами Au^1 . Таким образом, по длине цепи наблюдается чередование биядерных и моноядерных катионов золота (… Au^1 …[Au^2 … Au^3]…)_n (рис. 3б).

Особенность соединения 5 – присутствие в его структуре 13 неэквивалентных комплексных катионов золота, которые принимают участие в формировании двух независимых зигзагообразных псевдополимерных катионных цепей. Цепи первого типа (рис. 4a) включают четыре изомерных катиона Au^1-Au^4 , образующих шестизвенный фрагмент [$\cdots Au^1 \cdots Au^2 \cdots Au^3 \cdots Au^4 \cdots Au^3 \cdots Au^2 \cdots$], повторяющийся по длине цепи. В построении цепей второго типа участвуют изомерные катионы Au^6-Au^{11} , также формирующие повторяющийся шестизвенный фрагмент [$\cdots Au^6 \cdots Au^7 \cdots Au^8 \cdots Au^9 \cdots Au^{10} \cdots Au^{11} \cdots$] (рис. 4б). Слева и справа от полимерных цепей локализованы дискретные катионы Au^5 , Au^{12} и Au^{13} .

Рис. 4. Две независимые катион-катионные псевдополимерные цепи с дискретными катионами в супрамолекулярной структуре соединения 5 (а, б) и характер их взаимодействия с анионами. Вторичные связи Au…S и S…Cl показаны пунктиром. Алкильные заместители не приведены.

Результатом образования вторичных связей Au…S между соседними комплексными катионами является дополнительная координация атомами золота атомов серы в аксиальные положения, что приводит к формальному повышению KЧ атомов Au до 5 [AuS₄₊₁] или до 6 [AuS₄₊₂] с достраиванием полигонов металла до искаженной тетрагональной пирамиды и ок-

таэдра соответственно.

Наряду с формированием системы межкатионных вторичных связей Аи…S, в структуре обсуждаемых соединений (за исключением комплекса 9) наблюдаются также невалентные катион-анионные взаимодействия S…Cl [12], возникающие при участии атомов хлора анионов, локализованных между супрамолекулярными катионными структурами. Расстояния между атомами серы и хлора, лежащие в диапазоне 3.056–3.5437 Å (табл. 2), значительно меньше суммы ван-дер-ваальсовых радиусов обсуждаемых атомов 3.60 Å [6], а значения углов ∠CSCl близки к 180° и находятся в интервале 163.48–179.80°. Эти обстоятельства позволяют отнести обсуждаемые взаимодействия к типу халькогенных связей [13, 14].

Таблица 2

Соединение	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
1	$S^1 \cdots Cl^2$	3.4322(18)	$S^2 \cdots Cl^{1a}$	3.5437(17)	$S^4 \cdots Cl^{1a}$	3.2589(17)
2	$S^1 \cdots Cl^4$	3.304(5)	$S^4 \cdots Cl^4$	3.314(5)		
3	$S^5 \cdots Cl^{1c}$	3.3349(15)	S^{2a} Cl^{3c}	3.3834(14)	S^{4a} Cl^{3c}	3.5045(16)
4	S^{12} ···Cl ²	3.4971(14)				
5	S^{21} ···Cl ⁵²	3.121(6)	S^{62} ···Cl ⁴²	3.297(7)	S^{101} ···Cl ^{32b}	3.177(9)
	S^{24} ···Cl ⁵²	3.285(6)	S^{63} ···Cl ⁴²	3.352(5)	S^{104} ···Cl ^{32b}	3.274(9)
	S^{32} ···Cl ²⁴	3.209(6)	S^{72} ···Cl ¹⁴	3.088(4)	S^{121} ···Cl ⁶²	3.315(6)
	S^{33} ···· Cl^{24}	3.251(6)	S^{73} ···Cl ¹⁴	3.234(5)	S^{124} ···Cl ⁶²	3.208(6)
	S^{52} ···Cl ³³	3.234(8)	S^{91} ···Cl ^{64b}	3.231(5)	S^{132} ···· Cl^{22}	3.279(7)
	S^{53} ···· Cl^{33}	3.252(9)	S^{94} ···Cl ^{64b}	3.056(5)	S^{133} ···· Cl^{22}	3.200(6)
6	$S^4 \cdots Cl^1$	3.2407(15)	$S^6 \cdots Cl^1$	3.2756(18)		
7	$S^2 \cdots Cl^2$	3.4111(23)	$S^4 \cdots Cl^2$	3.3717(24)		
8	S^{11a} Cl^2	3.296(4)	S^{12} ···Cl ²	3.380(8)	S^{22} ···Cl ²	3.548(8)

Длина вторичных связей (d) S…Cl в соединениях 1-8

Совокупность различных типов вторичных связей приводит к объединению ионных структурных единиц комплексов и формированию сложно организованных супрамолекулярных архитектур – линейных и зигзагообразных 1D-полимерных цепей, катион-анионных лент и 2D-полимерных сеток (рис. 1-4). Формирование сетчатой структуры в случае соединения 7 осуществляется путем связывания двух параллельных псевдополимерных катионных цепей парами анионов $[ZnCl_4]^{2-}$, объединенных вторичными связями Cl…Cl. Межатомные расстояния Cl⁴…Cl^{4a} 3.159(2) Å существенно короче суммы ван-дер-ваальсовых радиусов двух атомов хлора 3,60 Å [6]. Дополнительная стабилизация структурной организации соединений осуществляется также и за счет многочисленных водородных связей C–H…Cl неклассического типа, в образовании которых принимают участие атомы водорода, входящие в состав ал-кильных (алкиленовых) заместителей дитиокарбаматных лигандов. Геометрические пара-

метры обсуждаемых водородных связей довольно типичны [15] и лежат в диапазоне: *d*(C−H) 0.98–1.00 Å, *d*(H…Cl) 2.60–2.93 Å, *d*(C…Cl) 3.429–3.904 Å, ∠(C−H…Cl) 128.7–174.6°.

Таким образом, проведенное рентгеноструктурное исследование дитиокарбаматнохлоридных ионных координационных соединений золота(III)-цинка и анализ реализующихся в структурах контактов невалентного типа с участием атомов золота, серы и хлора указывают на их определяющую роль в процессах самоорганизация обсуждаемых комплексов на супрамолекулярном уровне. Многообразие сложноорганизованных структур соединений обусловлено совместным проявлением вторичных Au…S, S…Cl, Cl…Cl связей, а также неклассических водородных связей C–H…Cl. Анализ межатомных расстояний показывает, что в ряду гетерополиядерных дитиокарбаматов золота(III)-цинка увеличение количества атомов углерода в цепи линейных алкильных радикалов или циклических заместителей, а также увеличение объема радикалов разветвленного строения приводит к уменьшению прочности вторичных связей Au-S и к повышению прочности вторичных связей S…Cl.

4. Bondi, A. Van der Waals Volumes and Radii // J. Phys. Chem. – 1964. – V. 68, №3. – P. 441-451.

5. Bondi, A. Van der Waals volumes and radii of metals in covalent compounds // J. Phys. Chem. – 1966. – V. 70, №9. – P. 3006-3007.

6. Бацанов, С.С. Ван-дер-ваальсовы радиусы элементов // Неорган. материалы. – 2001. – Т. 37, №9. – С. 1031-1046.

7. Pyykko, P. Strong closed-shell interactions in inorganic chemistry // Chem. Rev. – 1997. – V. 97, №3. – P. 597-636.

8. Кузьмина, Л.Г. Вторичные связи и их роль в химии // Коорд. химия. – 1999. – Т. 25, №9. – С. 643-663.

9. Bruker, APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11), SHELXTL (Version 6.12). Bruker AXS Inc., Madison, WI, USA (2004).

10. Sheldrick, G.M. SHELXT – Integrated space-group and crystal-structure determination // Acta Crystallogr. A. -2015. – V. 71, No1. – P. 3-8.

11. Yang, L., Powel, D.R., Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, $\tau 4$ // Dalton Trans. – 2007. – N \circ 9. – P. 955-964.

12. Haiduc, I., Edelmann, F.T. Supramolecular Organometallic Chemistry. – Weinheim, New York, Chichester, Brisbane, Singapore, Toronto: Wiley-VCH, 1999. – 471 p.

13. Wang, W., Ji, B., Zhang, Y. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond // J. Phys. Chem. A. – 2009. – V. 113, N28. – P. 8132-8135.

14. Scilabra, P., Terraneo, G., Resnati, G. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond // Acc. Chem. Res. – 2019. – V. 52, N5. – P. 1313-1324.

15. Бахтиярова, Ю.В., Аксунова, А.Ф., Галкина, И.В., Галкин, В.И., Лодочникова, О.А., Катаева, О.Н. Кристаллическая структура новых карбоксилатных фосфабетаинов и сопряженных с ними фосфониевых солей // Изв. Акад. наук, Серия «Химия». – 2016. – Т. 65, №5. – С. 1313-1318.

^{1.} Зоркий, П.М., Лубина, И.Е. Супрамолекулярная химия: возникновение, развитие и перспективы // Вестник Московского университета. Серия 2 «Химия». – 1999. – Т. 40, №5. – С. 300-307.

^{2.} Alcock, N.W. Secondary bonding to nonmetallic elements. // Adv. Inorg. Chem. Radiochem. – 1972. – V. 15. – P. 1-58.

^{3.} Pauling, L. The nature of the chemical bond and the structure of molecules and crystals. – London: Cornell Univ. Press, 1960. – 644 p.